
CS3485
Deep Learning for Computer Vision

Lec 8: Data Augmentation and Deep CNNs

Announcement

■ Grades for Quiz 2: they are available and visible now.

(Tentative) Lecture Roadmap

Basics of Deep Learning

Deep Learning and Computer Vision in Practice

Intro to Object
Detection

Fast Object
Detection

Intro to Image
Segmentation

Autoencoders Advanced GANs

Applications of Detection
and Segmentation

Image Generation
with GANs

The Attention
Mechanism

Transformers
and ChatGPT

Intro to
Computer Vision

Linear Classifiers and
Perceptron

Multilayer Perceptron Pytorch I – MLPs Convolutional Neural
Networks

Optimization
in Deep Learning

Pytorch II – Images and
Regularization

Data Augmentation
and Deep CNNs

Inception Net and
what CNNs learn

Transfer Learning and
Residual Nets

Adversarial Examples
and Self-supervision

Intro to
MLOps

Image Generation
by Prompt

Misc.
Topics

Ways to improve

■ Last time, we saw that we can improve the classification task in the FashionMNIST
dataset by using Convolutional Neural Networks.

■ Despite our final classification outcome being pretty good, we can still improve it in some
ways that we haven’t tried last time:
● By adding regularization (dropout, for example) and Batch Normalization to the network.
● By training the network for longer (more than 5 epochs).
● By tuning some of the network constants (also called hyperparameters), such as the optimizer’s

learning rate, the batch size, the number of strides and the padding of each ConvLayer.
● By trying different amount of units/filters per layer to be learned.
● By using data augmentation.
● By adding more layers and making the network able to learn more complex image features.

■ Today, we’ll focus our efforts on the last two options: we’ll see how making the data (the
input) or the network (the model) “richer” can improve our classification performance.

Issues with Shifting

■ Last time, we saw that CNNs do much better at classifying Fashion MNIST data than
simple Multilayer Perceptrons.

■ Today, we’ll check how well their classifier works when we slightly change some of the
images in a way that their classes would still be recognizable.

■ This happens when you shift the image below some pixels to the right and to the left:

In these examples, the original class (“trouser”) shouldn’t become less recognizable
because of the shifts.

Various shiftsNo shift

Trying out the CNN on the shifted images

■ Let’s see how the model trained in the last class predicts the classes of the trouser
shifted 1 to 5 pixels to the right and to the left*:

softmax = nn.Softmax() # Define the softmax function (remember that the more does not output probs.)
idx = 24300 # The index of the trouser from the last slide

preds = []
for ix in range(-5, 6):
 img = x_train[ix] # Read the desired image

 img_rolled = np.roll(img, px, axis=1) # Roll the image by "px" pixels

 img_rolled = torch.Tensor(img_rolled / 255.) \ # Scale and reshape the image to the image
 .view(-1, 1, 28, 28) \ # format used during learning. Register the
 .to(device) # result to the GPU

 pred = softmax(model(img_rolled)) # Apply our learned model to predict the class probabilities

 preds.append(pred.cpu().detach().numpy()) # Post process the prediction and then save it to the list

* In the code above, we are using the variable names and libraries from the previous class. It’s like its continuation.

Trying out the CNN on the shifted images

■ Now we can plot the probabilities of each
shifted image to belong to each of the 10
possible classes.

■ For most shifts, the network finds the right
class “trouser”.

■ But, unexpectedly, the network makes very
bad guesses for the images shifted closer to
the border of the image.

■ In fact, it seems to be
sure that the image
on the left is a sandal!

■ What can we do to fix
this?

Prob. of each class for various shifts (CNN)

(A digression) CNNs and their receptive field

Prob. of each class for various shifts (MLP)
■ To be fair with the CNN model, it does

quite a good work when compared to the
Multilayer Perceptron model (on the right).

■ The improvement CNN adds to the pure
fully connected MLP is related to the
receptive field of convolutional and
pooling layers.

■ This means that later
individual units have
information about greater
areas of the original image.

■ This enables capturing of
some shifting.

Data augmentation as a solution

■ But back to CNNs! We noticed that these issues with image shifting can have on a
model's prediction accuracy.

■ However, in the real world, we might encounter various scenarios, such as the following:
● Images are rotated slightly,
● Images are zoomed in/out (scaled),
● Some amount of noise is present in the image,
● Images have low brightness,
● Images have been flipped,
● Images have been sheared (one side of the image is more twisted).

■ A neural network that does not take the preceding scenarios into consideration won't
provide accurate results.

■ One solution to that issue is to artificially change the data in the dataset in a way to
consider the above settings. This is called Data Augmentation*.

* In other contexts, augmentation can also mean “make the dataset larger”, but in the end of the day, it is the same as we are doing.

Data augmentation via transformations

■ The strategy we’ll take consists in making random changes in each of our datapoints
before they enter in our train_batch function.

■ We’ll use the very handy transforms from torchvision, usually imported as:

■ A useful tool found in there is the affine transformation using RandomAffine:

whose objects are functions (nn.Modules, in fact) that perform either a random rotation,
translation, scaling, shearing or any subset of them. Its parameters are:
● degrees (a number): Range of degrees to select from
● translate (a tuple): Maximum image fraction for horizontal and vertical shifts.
● scale (a number or a tuple): Scaling factor interval
● shear (a number): Range of pixels in the image will be sheared horizontally.

from torchvision.transforms import transforms

transforms.RandomAffine(degrees, translate=None, scale=None, shear=None)

Examples of affine transformations

transforms.RandomAffine(180) transforms.RandomAffine(0, translate=(0.3, 0.3))

transforms.RandomAffine(0,shear=20) transforms.RandomAffine(0, scale=(0.2, 0.8))

Original

■ Here a some examples of random affine transformations on an image from Fashion
MNIST using transforms.RandomAffine*:

*Check the documentation here for more details on the layer and on other possible parameters.

http://pytorch.org/vision/main/generated/torchvision.transforms.RandomAffine.html

Other Transformations

■ The transforms library also provides more options of transformations*. For example:
● Change the perspective (transforms.RandomPerspective):

● Cropping a part of the image out (transforms.RandomCrop):

● Add Gaussian noise (transforms.GaussianBlur):

*Here you can find a list of all possible transforms available in PyTorch.

https://pytorch.org/vision/master/transforms.html

Other Transformations

● Invert the grayscale values / colors (transforms.RandomInvert):

■ We can compose many different transformations using transforms.Compose that
receives a list of transforms modules and processes them sequentially on the data.

■ For example, the following code generates a transformation that first randomly rotates an
image and then randomly inverts its colors.

transforms.Compose([transforms.RandomAffine(180), transforms.RandomInvert()])

Adding a transformation to the dataset

■ The simplest way to add a transformation to the dataset is to apply it in the
__getitem__ function to the image being gotten.

■ This way, this random transformation will happen whenever the DataLoader is fetching
the data to compose the mini-batch.

from torchvision.transforms import transforms

class FMNISTDataset(Dataset):
 def __init__(self, x, y):
 x = x.view(-1, 1, 28, 28).float()/255
 self.x, self.y = x, y
 self.shift = transforms.RandomAffine(0, translate=(0.5, 0))
 def __getitem__(self, ix):
 x = self.x[ix]
 x = self.shift(x)
 return x.to(device), self.y[ix].to(device)
 def __len__(self):
 return len(self.x)

■ In our example, we wish
the network to learn that
horizontal shifts shouldn’t
change the object’s class.

■ Therefore we can
augment the dataset by
applying random
horizontal shifts to the
images.

Result of the augmentation

■ By making just that change, we are able to
achieve the result for the same trouser
image from before.

■ Notice that the network became more
“invariant” to horizontal shifts, as it makes
the right prediction with certitude despite
the shifts.

■ This, however, came at a price:
a. Adding the random shifting operation at

each __getitem__ made the overall 5
epoch learning take 6 min (from 53s).

b. The new test accuracy is at around 88%
(from 91% from before)

Prob. of each class for various shifts (Augmented)

Problems with augmentation

■ The problem a is easy to fix, as the purpose of the previous code was only to serve as an
illustration of the augmentation process.

■ In PyTorch there are ways to make the transformation application more efficient, by, for
example, using them right when you load the data.

and them changing other parts of the code so we don’t need to instantiate our own
Dataset object, which is inefficient (these details go beyond the scope of our course).

■ Problem b, however, is harder to solve, since an augmented dataset is intrinsically
richer and more complex than the original data.

■ Typically, it’d require at least going through more training epochs or changing the
network to more complex ones.

transform_train = transforms.Compose([transforms.RandomAffine(0, translate=(0.5, 0)),
 transforms.ToTensor()])
fmnist_train = datasets.FashionMNIST('~/FMNIST', download=True, train=True, transform=transform_train)

Exercise (In pairs)

■ Select one image from the FashionMINIST dataset and compose the following
transforms:
● Random Rotation + Random Color Invert,
● Random Shifting (as much as you want) + Random Scaling,
● Another combination of your choosing.

Generate 5 samples per transform. Hint: to get a function that applies a random rotation
on an image of Fashion MNIST, for example, you can do this*:

Click here to open code in Colab

import matplotlib.pyplot as plt
from torchvision.transforms import transforms

random_rotation = transforms.RandomAffine(180)
x_fmnist = fmnist_train.data[0]

x_orig = torch.tensor(x_fmnist[None, :, :])
x = random_rotation(x_orig)

plt.imshow(x[0, :, :], cmap="gray")
plt.show()

* Note that you have to add a “channel” dimension to the image, and then “remove” it in order to print the transformed image.

https://colab.research.google.com/drive/1kgTqQSohch3KFLOBBpaWHOivIwZ0qRsT?usp=sharing
https://colab.research.google.com/drive/1kgTqQSohch3KFLOBBpaWHOivIwZ0qRsT?usp=sharing

Making the model more complex

■ We just saw that it is possible to learn a better classification model by presenting a richer
variety of data, even if that data is artificially augmented.

■ Another way to come up with a better model is by training a network whose feature
learning phase can capture more nuanced and representative visual features.

■ With such these more complex features, we hope that the final densely connected layers
will be able to output good classifications.

Making the network deeper

■ How to come up with better feature learners?
■ Over the recent years, researchers have noticed

that simply adding more ConvLayers before the
dense classifier usually bring improvements.

■ This pursuit of more layered nets gave rise to
what is know as Deep Learning, which is, simply
put, the feature learning process that uses
multilayered neural networks.

■ In other words, deep learning is, in many ways,
just representation learning

■ Later in the course, we’ll see why going deeper
helps learning.

 The ImageNet Dataset

■ Historically, Deep Learning
started to impress the world in
2012, when a deep net called
AlexNet broke the classification
record on the ImageNet dataset.

■ This dataset spans 1000 classes
and contains 1,281,167 training
and 100,000 test images* of
various sizes.

■ The images are very realistic, all
hierarchically annotated by
humans.

*In fact, this is just a subset of +14 million images spanning more than 20k classes called the ImageNet project. More info on it here.

https://www.image-net.org

 The ImageNet Challenge

28.2%

25.8%

16.4%

11.7%

6.7%

3.6% 3.1%

Human level
performance**: 5.1%

2010 2011 2012 2013 2014 2015

ImageNet Top 5 Classification Error Rate

2016

All Deep Learning-based

■ Since 2012, Deep Learning has
outperformed every other method in the
ImageNet’s Top 5* Classification competition.

■ Starting from 2014, it also overcame
humans** when submitted to the same
challenge.

■ One common feature of all these winning
networks is that they were getting deeper
and deeper.

■ Today we’ll focus on one of the runner-ups
from the 2014 edition: the VGG16 network.

** Note that these methods need to identify 1 of a 1000 possible classes, while humans can recognize a much larger number of categories.

* The true class only need to be among the top 5 predicted classes to be considered a successful prediction.

The VGG16 Network

■ The VGG16 net, for Visual Geometry Group (VGG) at University of Oxford, who
developed the network in 2014, is a simple, by very deep network, with 16 layers!

■ While the input RGB image has to be reshaped to 244×244 pixels, it uses many
ConvLayers and max-poolings to gradually decrease its size, before the dense layers.

3
×2

44
×2

44

64×244×244
128×112×112 256×56×56 512×28×28 512×14×14 512×7×7 1×1×4096 1×1×4096 1×1×1000

ConvLayer Max-pool Dense layer
Input im

ag
e

■ In a simplified way, the VGG16 can be summarized as follows:

■ Although I’m sure you can code that network up from scratch, PyTorch also provides the
model as it was conceived via in tourchvision:

VGG16 in PyTorch
3

×3
 C

on
vL

ay
er

, 6
4

fil
t.

3
×3

 C
on

vL
ay

er
, 6

4
fil

t.

2
×2

 M
ax

-P
oo

l

3
×3

 C
on

vL
ay

er
, 1

2
8

 fi
lt.

3
×3

 C
on

vL
ay

er
, 1

2
8

 fi
lt.

2
×2

 M
ax

-P
oo

l

3
×3

 C
on

vL
ay

er
, 2

56
 fi

lt.

3
×3

 C
on

vL
ay

er
, 2

56
 fi

lt.

2
×2

 M
ax

-P
oo

l

3
×3

 C
on

vL
ay

er
, 2

56
 fi

lt.

3
×3

 C
on

vL
ay

er
, 5

12
 fi

lt.

3
×3

 C
on

vL
ay

er
, 5

12
 fi

lt.

2
×2

 M
ax

-P
oo

l

3
×3

 C
on

vL
ay

er
, 5

12
 fi

lt.

3
×3

 C
on

vL
ay

er
, 5

12
 fi

lt.

3
×3

 C
on

vL
ay

er
, 5

12
 fi

lt.

2
×2

 M
ax

-P
oo

l

3
×3

 C
on

vL
ay

er
, 5

12
 fi

lt.

D
en

se
, 4

0
9

6
 u

ni
ts

D
en

se
, 4

0
9

6
 u

ni
ts

D
en

se
, 1

0
0

0
 u

ni
ts

from torchvision import models
model = models.vgg16()

The summary of VGG16

 Layer (type) Output Shape Param #
===
 Conv2d-1 [-1, 64, 224, 224] 1,792
 ReLU-2 [-1, 64, 224, 224] 0
 Conv2d-3 [-1, 64, 224, 224] 36,928
 ReLU-4 [-1, 64, 224, 224] 0
 MaxPool2d-5 [-1, 64, 112, 112] 0
 Conv2d-6 [-1, 128, 112, 112] 73,856
 ReLU-7 [-1, 128, 112, 112] 0
 Conv2d-8 [-1, 128, 112, 112] 147,584
 ReLU-9 [-1, 128, 112, 112] 0
 MaxPool2d-10 [-1, 128, 56, 56] 0
 Conv2d-11 [-1, 256, 56, 56] 295,168
 ReLU-12 [-1, 256, 56, 56] 0
 Conv2d-13 [-1, 256, 56, 56] 590,080
 ReLU-14 [-1, 256, 56, 56] 0
 Conv2d-15 [-1, 256, 56, 56] 590,080
 ReLU-16 [-1, 256, 56, 56] 0
 MaxPool2d-17 [-1, 256, 28, 28] 0
 Conv2d-18 [-1, 512, 28, 28] 1,180,160
 ReLU-19 [-1, 512, 28, 28] 0

 Conv2d-20 [-1, 512, 28, 28] 2,359,808
 ReLU-21 [-1, 512, 28, 28] 0
 Conv2d-22 [-1, 512, 28, 28] 2,359,808
 ReLU-23 [-1, 512, 28, 28] 0
 MaxPool2d-24 [-1, 512, 14, 14] 0
 Conv2d-25 [-1, 512, 14, 14] 2,359,808
 ReLU-26 [-1, 512, 14, 14] 0
 Conv2d-27 [-1, 512, 14, 14] 2,359,808
 ReLU-28 [-1, 512, 14, 14] 0
 Conv2d-29 [-1, 512, 14, 14] 2,359,808
 ReLU-30 [-1, 512, 14, 14] 0
 MaxPool2d-31 [-1, 512, 7, 7] 0
AdaptiveAvgPool2d-32 [-1, 512, 7, 7] 0
 Linear-33 [-1, 4096] 102,764,544
 ReLU-34 [-1, 4096] 0
 Dropout-35 [-1, 4096] 0
 Linear-36 [-1, 4096] 16,781,312
 ReLU-37 [-1, 4096] 0
 Dropout-38 [-1, 4096] 0
 Linear-39 [-1, 1000] 4,097,000
===
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
---(...)

from torchsummary import summary
summary(model.to(device), (3, 224, 224))

A new
type of
layer.

Adaptative Average Pooling and Other VGG’s

■ As you may have noticed on the previous
summary*, VGG16 utilizes a layer we
haven’t yet learned, the Adaptive
Average Pooling layer.

 (...) (...) (...)
 ReLU-30 [-1, 512, 14, 14] 0
 MaxPool2d-31 [-1, 512, 7, 7] 0
AdaptiveAvgPool2d-32 [-1, 512, 7, 7] 0
 Linear-33 [-1, 4096] 102,764,544
 (...) (...) (...)

■ It is similar to nn.AvgPool2d, which returns the average of a section instead of the
maximum, which nn.MaxPool2d does. In both cases, we set choose the kernel size.

■ In nn.AdaptativeAvgPool2d, we instead set the output size, and it automatically
computes the kernel size so that the specified size is returned.

■ This layer plays an important role in the transition from the feature learning phase to
the classifier and will be important in our next class.

■ This layer is found is other models, such as VGG16’s “siblings”: VGG13 and VGG19, width
13 and 19 layers, respectively, which can be used via models.vgg13(), and models.vgg19().

* Despite not explicitly showing here, there is a flattening layer in between the AvgPool and the Linear layers, as its official implementation
recognizes.

https://github.com/pytorch/vision/blob/d3d393672b877f80fedd2d11de6b84fb19599c2e/torchvision/models/vgg.py#L48

The challenges of Deep Nets

■ Note that in VGG16 we have to train more than 135 million parameters on RGB images of
size 224×224!

■ Using a simple GPU, we were taking ~1 min to learn 800k weights for just 5 epochs on
60000 grayscale images of size 28×28.

■ For most applications, it is not worth to retrain these networks, especially if one is
running on a low computational/memory budget.

■ Also, the dataset VGG16 was trained on (ImageNet) has +1 million images to be trained on.
■ Two issues that are very common in most deep learning applications:

a. The models are huge and most companies can’t afford the of computational requirement.
b. These models need to be trained on very large datasets so to justify their complexity. In many

applications, the datasets are very small (one could recur to data augmentation in this case).

■ Next class, we’ll see how we can still leverage the capacities of deep learning models in
the applications at a considerably low computational cost.

Exercise (In pairs)

■ Go back the VGG16’s summary and explain how the output sizes change as they do
(remember that each ConvLayer uses 3×3 kernels). Hint: try to print the model and see
is it gives you any help:

from torchvision import models
model = models.vgg16()
print(model)

#

Video: Deep Learning is eating the Scientific World!

http://www.youtube.com/watch?v=SozTRempXjI

