
CS3485 
Deep Learning for Computer Vision

Lec 8: Data Augmentation and Deep CNNs



Announcement

■ Grades for Quiz 2: they are available and visible now.
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Ways to improve

■ Last time, we saw that we can improve the classification task in the FashionMNIST 
dataset by using Convolutional Neural Networks.

■ Despite our final classification outcome being pretty good, we can still improve it in some 
ways that we haven’t tried last time:
● By adding regularization (dropout, for example) and Batch Normalization to the network.
● By training the network for longer (more than 5 epochs).
● By tuning some of the network constants (also called hyperparameters), such as the optimizer’s 

learning rate, the batch size, the number of strides and the padding of each ConvLayer.
● By trying different amount of units/filters per layer to be learned.
● By using data augmentation.
● By adding more layers and making the network able to learn more complex image features.

■ Today, we’ll focus our efforts on the last two options: we’ll see how making the data (the 
input) or the network (the model) “richer” can improve our classification performance.



Issues with Shifting

■ Last time, we saw that CNNs do much better at classifying Fashion MNIST data than 
simple Multilayer Perceptrons.

■ Today, we’ll check how well their classifier works when we slightly change some of the 
images in a way that their classes would still be recognizable.

■ This happens when you shift the image below some pixels to the right and to the left: 

In these examples, the original class (“trouser”) shouldn’t become less recognizable 
because of the shifts. 

Various shiftsNo shift



Trying out the CNN on the shifted images

■ Let’s see how the model trained in the last class predicts the classes of the trouser 
shifted 1 to 5 pixels to the right and to the left*:

softmax = nn.Softmax() # Define the softmax function (remember that the more does not output probs.)
idx = 24300  # The index of the trouser from the last slide

preds = []
for ix in range(-5, 6):
   img = x_train[ix] # Read the desired image

   img_rolled = np.roll(img, px, axis=1) # Roll the image by "px" pixels

   img_rolled = torch.Tensor(img_rolled / 255.) \   # Scale and reshape the image to the image 
                             .view(-1, 1, 28, 28) \ # format used during learning. Register the 
                             .to(device)            # result to the GPU

   pred = softmax(model(img_rolled)) # Apply our learned model to predict the class probabilities

   preds.append(pred.cpu().detach().numpy()) # Post process the prediction and then save it to the list

* In the code above, we are using the variable names and libraries from the previous class. It’s like its continuation.



Trying out the CNN on the shifted images

■ Now we can plot the probabilities of each 
shifted image to belong to each of the 10 
possible classes.

■ For most shifts, the network finds the right 
class “trouser”. 

■ But, unexpectedly, the network makes very 
bad guesses for the images shifted closer to 
the border of the image.

■ In fact, it seems to be 
sure that the image 
on the left is a sandal!

■ What can we do to fix 
this?

Prob. of each class for various shifts (CNN)



(A digression) CNNs and their receptive field

Prob. of each class for various shifts (MLP)
■ To be fair with the CNN model, it does 

quite a good work when compared to the 
Multilayer Perceptron model (on the right). 

■ The improvement CNN adds to the pure 
fully connected MLP is related to the 
receptive field of convolutional and 
pooling layers.

■ This means that later 
individual units have 
information about greater 
areas of the original image.

■ This enables capturing of 
some shifting.



Data augmentation as a solution

■ But back to CNNs! We noticed that these issues with image shifting can have on a 
model's prediction accuracy. 

■ However, in the real world, we might encounter various scenarios, such as the following:
● Images are rotated slightly,
● Images are zoomed in/out (scaled),
● Some amount of noise is present in the image,
● Images have low brightness,
● Images have been flipped,
● Images have been sheared (one side of the image is more twisted).

■ A neural network that does not take the preceding scenarios into consideration won't 
provide accurate results.

■ One solution to that issue is to artificially change the data in the dataset in a way to 
consider the above settings. This is called Data Augmentation*.

* In other contexts, augmentation can also mean “make the dataset larger”, but in the end of the day, it is the same as we are doing.



Data augmentation via transformations

■ The strategy we’ll take consists in making random changes in each of our datapoints 
before they enter in our train_batch function.

■ We’ll use the very handy transforms from torchvision, usually imported as:

■ A useful tool found in there is the affine transformation using RandomAffine:

whose objects are functions (nn.Modules, in fact) that perform either a random rotation, 
translation, scaling, shearing or any subset of them. Its parameters are:
● degrees (a number): Range of degrees to select from
● translate  (a tuple): Maximum image fraction for horizontal and vertical shifts. 
● scale (a number or a tuple): Scaling factor interval
● shear (a number): Range of pixels in the image will be sheared horizontally.

from torchvision.transforms import transforms

transforms.RandomAffine(degrees, translate=None, scale=None, shear=None)



Examples of affine transformations

transforms.RandomAffine(180) transforms.RandomAffine(0, translate=(0.3, 0.3))

transforms.RandomAffine(0,shear=20) transforms.RandomAffine(0, scale=(0.2, 0.8))

Original

■ Here a some examples of random affine transformations on an image from Fashion 
MNIST using transforms.RandomAffine*:

*Check the documentation here for more details on the layer and on other possible parameters.

http://pytorch.org/vision/main/generated/torchvision.transforms.RandomAffine.html


Other Transformations

■ The transforms library also provides more options of transformations*. For example:
● Change the perspective (transforms.RandomPerspective ):

● Cropping a part of the image out (transforms.RandomCrop ):

● Add Gaussian noise (transforms.GaussianBlur ):

*Here you can find a list of all possible transforms available in PyTorch.

https://pytorch.org/vision/master/transforms.html


Other Transformations

● Invert the grayscale values / colors (transforms.RandomInvert ):

■ We can compose many different transformations using transforms.Compose that 
receives a list of transforms modules and processes them sequentially on the data.

■ For example, the following code generates a transformation that first randomly rotates an 
image and then randomly inverts its colors.  

transforms.Compose([transforms.RandomAffine(180), transforms.RandomInvert()])



Adding a transformation to the dataset 

■ The simplest way to add a transformation to the dataset is to apply it in the 
__getitem__ function to the image being gotten.

■ This way, this random transformation will happen whenever the DataLoader is fetching 
the data to compose the mini-batch.

from torchvision.transforms import transforms

class FMNISTDataset(Dataset):
  def __init__(self, x, y):
      x = x.view(-1, 1, 28, 28).float()/255
      self.x, self.y = x, y
      self.shift = transforms.RandomAffine(0, translate=(0.5, 0))
  def __getitem__(self, ix):
      x = self.x[ix]
      x = self.shift(x)
      return x.to(device), self.y[ix].to(device)
  def __len__(self):
      return len(self.x)

■ In our example, we wish 
the network to learn that 
horizontal shifts shouldn’t 
change the object’s class.

■ Therefore we can 
augment the dataset by 
applying random 
horizontal shifts to the 
images.



Result of the augmentation  

■ By making just that change, we are able to 
achieve the result for the same trouser 
image from before.

■ Notice that the network became more 
“invariant” to horizontal shifts, as it makes 
the right prediction with certitude despite 
the shifts.

■ This, however, came at a price:
a. Adding the random shifting operation at 

each __getitem__  made the overall 5 
epoch learning take 6 min (from 53s).

b. The new test accuracy is at around 88% 
(from 91% from before)

Prob. of each class for various shifts (Augmented)



Problems with augmentation

■ The problem a is easy to fix, as the purpose of the previous code was only to serve as an 
illustration of the augmentation process.

■ In PyTorch there are ways to make the transformation application more efficient, by, for 
example, using them right when you load the data.

and them changing other parts of the code so we don’t need to instantiate our own 
Dataset object, which is inefficient (these details go beyond the scope of our course).

■ Problem b, however, is harder to solve, since an augmented dataset is intrinsically 
richer and more complex than the original data.

■ Typically, it’d require at least going through more training epochs or changing the 
network to more complex ones.

transform_train = transforms.Compose([transforms.RandomAffine(0, translate=(0.5, 0)),
                                      transforms.ToTensor()])
fmnist_train = datasets.FashionMNIST('~/FMNIST', download=True, train=True, transform=transform_train)



Exercise (In pairs)

■ Select one image from the FashionMINIST dataset and compose the following 
transforms:
● Random Rotation + Random Color Invert,
● Random Shifting (as much as you want) + Random Scaling,
● Another combination of your choosing.

Generate 5 samples per transform. Hint: to get a function that applies a random rotation 
on an image of Fashion MNIST, for example, you can do this*:

Click here to open code in Colab

import matplotlib.pyplot as plt
from torchvision.transforms import transforms

random_rotation = transforms.RandomAffine(180)
x_fmnist = fmnist_train.data[0]

x_orig = torch.tensor(x_fmnist[None, :, :])
x = random_rotation(x_orig)

plt.imshow(x[0, :, :], cmap="gray")
plt.show()

* Note that you have to add a “channel” dimension to the image, and then “remove” it in order to print the transformed image.  

https://colab.research.google.com/drive/1kgTqQSohch3KFLOBBpaWHOivIwZ0qRsT?usp=sharing
https://colab.research.google.com/drive/1kgTqQSohch3KFLOBBpaWHOivIwZ0qRsT?usp=sharing


Making the model more complex

■ We just saw that it is possible to learn a better classification model by presenting a richer 
variety of data, even if that data is artificially augmented.

■ Another way to come up with a better model is by training a network whose feature 
learning phase can capture more nuanced and representative visual features. 

■ With such these more complex features, we hope that the final densely connected layers 
will be able to output good classifications.



Making the network deeper

■ How to come up with better feature learners? 
■ Over the recent years, researchers have noticed 

that simply adding more ConvLayers before the 
dense classifier usually bring improvements.

■ This pursuit of more layered nets gave rise to 
what is know as Deep Learning, which is, simply 
put, the feature learning process that uses 
multilayered neural networks.

■ In other words, deep learning is, in many ways, 
just representation learning

■ Later in the course, we’ll see why going deeper 
helps learning.



 The ImageNet Dataset 

■ Historically, Deep Learning 
started to impress the world in 
2012, when a deep net called 
AlexNet broke the classification 
record on the ImageNet dataset.

■ This dataset spans 1000 classes 
and contains 1,281,167 training 
and 100,000 test images* of 
various sizes.

■ The images are very realistic, all 
hierarchically annotated by 
humans. 

*In fact, this is just a subset of +14 million images spanning more than 20k classes called the ImageNet project. More info on it here.

https://www.image-net.org


 The ImageNet Challenge 

28.2%

25.8%

16.4%

11.7%

6.7%

3.6% 3.1%

Human level 
performance**: 5.1%

2010 2011 2012 2013 2014 2015

ImageNet Top 5 Classification Error Rate

2016

All Deep Learning-based

■ Since 2012, Deep Learning has 
outperformed every other method in the 
ImageNet’s Top 5* Classification competition.

■ Starting from 2014, it also overcame 
humans** when submitted to the same 
challenge.

■ One common feature of all these winning 
networks is that they were getting deeper 
and deeper.

■ Today we’ll focus on one of the runner-ups 
from the 2014 edition: the VGG16 network.

** Note that these methods need to identify 1 of a 1000 possible classes, while humans can recognize a much larger number of categories.

* The true class only need to be among the top 5 predicted classes to be considered a successful prediction.



The VGG16 Network

■ The VGG16 net, for Visual Geometry Group (VGG) at University of Oxford, who 
developed the network in 2014, is a simple, by very deep network, with 16 layers!

■ While the input RGB image has to be reshaped to 244×244 pixels, it uses many 
ConvLayers and max-poolings to gradually decrease its size, before the dense layers.
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■ In a simplified way, the VGG16 can be summarized as follows:

■ Although I’m sure you can code that network up from scratch, PyTorch also provides the 
model as it was conceived via in tourchvision: 

VGG16 in PyTorch
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from torchvision import models
model = models.vgg16()



The summary of VGG16

---------------------------------------------------------
        Layer (type)           Output Shape       Param #
=========================================================
            Conv2d-1     [-1, 64, 224, 224]         1,792
              ReLU-2     [-1, 64, 224, 224]             0
            Conv2d-3     [-1, 64, 224, 224]        36,928
              ReLU-4     [-1, 64, 224, 224]             0
         MaxPool2d-5     [-1, 64, 112, 112]             0
            Conv2d-6    [-1, 128, 112, 112]        73,856
              ReLU-7    [-1, 128, 112, 112]             0
            Conv2d-8    [-1, 128, 112, 112]       147,584
              ReLU-9    [-1, 128, 112, 112]             0
        MaxPool2d-10      [-1, 128, 56, 56]             0
           Conv2d-11      [-1, 256, 56, 56]       295,168
             ReLU-12      [-1, 256, 56, 56]             0
           Conv2d-13      [-1, 256, 56, 56]       590,080
             ReLU-14      [-1, 256, 56, 56]             0
           Conv2d-15      [-1, 256, 56, 56]       590,080
             ReLU-16      [-1, 256, 56, 56]             0
        MaxPool2d-17      [-1, 256, 28, 28]             0
           Conv2d-18      [-1, 512, 28, 28]     1,180,160
             ReLU-19      [-1, 512, 28, 28]             0

           Conv2d-20      [-1, 512, 28, 28]     2,359,808
             ReLU-21      [-1, 512, 28, 28]             0
           Conv2d-22      [-1, 512, 28, 28]     2,359,808
             ReLU-23      [-1, 512, 28, 28]             0
        MaxPool2d-24      [-1, 512, 14, 14]             0
           Conv2d-25      [-1, 512, 14, 14]     2,359,808
             ReLU-26      [-1, 512, 14, 14]             0
           Conv2d-27      [-1, 512, 14, 14]     2,359,808
             ReLU-28      [-1, 512, 14, 14]             0
           Conv2d-29      [-1, 512, 14, 14]     2,359,808
             ReLU-30      [-1, 512, 14, 14]             0
        MaxPool2d-31        [-1, 512, 7, 7]             0
AdaptiveAvgPool2d-32        [-1, 512, 7, 7]             0
           Linear-33             [-1, 4096]   102,764,544
             ReLU-34             [-1, 4096]             0
          Dropout-35             [-1, 4096]             0
           Linear-36             [-1, 4096]    16,781,312
             ReLU-37             [-1, 4096]             0
          Dropout-38             [-1, 4096]             0
           Linear-39             [-1, 1000]     4,097,000
=========================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
-------------------------------------------------(...)

from torchsummary import summary
summary(model.to(device), (3, 224, 224)) 

A new 
type of 
layer.



Adaptative Average Pooling and Other VGG’s

■ As you may have noticed on the previous  
summary*, VGG16 utilizes a layer we 
haven’t yet learned, the Adaptive 
Average Pooling layer.

               (...)                  (...)         (...)
             ReLU-30      [-1, 512, 14, 14]             0
        MaxPool2d-31        [-1, 512, 7, 7]             0
AdaptiveAvgPool2d-32        [-1, 512, 7, 7]             0
           Linear-33             [-1, 4096]   102,764,544
               (...)                  (...)         (...)

■ It is similar to nn.AvgPool2d, which returns the average of a section instead of the 
maximum, which nn.MaxPool2d does. In both cases, we set choose the kernel size.

■ In nn.AdaptativeAvgPool2d, we instead set the output size, and it automatically 
computes the kernel size so that the specified size is returned.

■ This layer plays an important role in the transition from the feature learning phase to 
the classifier and will be important in our next class.

■ This layer is found is other models, such as VGG16’s “siblings”: VGG13 and VGG19, width 
13 and 19 layers, respectively, which can be used via models.vgg13(), and models.vgg19().

* Despite not explicitly showing here, there is a flattening layer in between the AvgPool and the Linear layers, as its official implementation 
recognizes.

https://github.com/pytorch/vision/blob/d3d393672b877f80fedd2d11de6b84fb19599c2e/torchvision/models/vgg.py#L48


The challenges of Deep Nets

■ Note that in VGG16 we have to train more than 135 million parameters on RGB images of 
size 224×224!

■ Using a simple GPU, we were taking ~1 min to learn 800k weights for just 5 epochs on 
60000 grayscale images of size 28×28.

■ For most applications, it is not worth to retrain these networks, especially if one is  
running on a low computational/memory budget.

■ Also, the dataset VGG16 was trained on (ImageNet) has +1 million images to be trained on. 
■ Two issues that are very common in most deep learning applications:

a. The models are huge and most companies can’t afford the of computational requirement.
b. These models need to be trained on very large datasets so to justify their complexity. In many 

applications, the datasets are very small (one could recur to data augmentation in this case).

■ Next class, we’ll see how we can still leverage the capacities of deep learning models in 
the applications at a considerably low computational cost.



Exercise (In pairs)

■ Go back the VGG16’s summary and explain how the output sizes change as they do 
(remember that each ConvLayer uses 3×3 kernels). Hint: try to print the model and see 
is it gives you any help:

from torchvision import models
model = models.vgg16()
print(model)

#


Video: Deep Learning is eating the Scientific World!

http://www.youtube.com/watch?v=SozTRempXjI

